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Symplectic symmetric manifolds G/H with G simple are divided into four classes
[17]: (a) Hermitian symmetric spaces; (b) semi-Kahlerian irreducible symmetric spaces;
(c) para-Hermitian symmetric spaces of the first category; (d) para-Hermitian symmetric
spaces of the second category. The spaces of the three latter classes are not Riemannian,
and each has a Riemannian form belonging to the class of Hermitian symmetric spaces.

Berezin constructed quantization on spaces of class (a). We would like to outline a
program for a quantization in the spirit of Berezin for other classes of symplectic homoge-
ncous manifolds. In these lectures we restrict ourselves to class (c). The local classification
of spaces of class (c) is given in §3.

There is an inspiring analogy between (a) and (c), which starts at the coordinate level:
2.5« &,1, sce §3, and continues on the level of formulae and so on. On the other hand,
it is well-known, that the passage from the Riemannian case to the non-Riemannian one
drastically increases the difficulties. So, in this theory there are still many interesting

open problems.
§1. Quantizations on the plane

First we have classical mechanics. Let us consider a particle with oue degree of free-
dom, say, a linear oscilator with the coordinate ¢ and the impulse p. Then the energy is
H = (1/2)p* + ¢°. To pass to quantum mechanics we replace functions by operators:

h d .

pPop=-759"4=¢
1 dg

These operators act in L?(R). Then the energy H goes to the Hamiltonian

A2 2 2
3 p 2 h* d 2
H == =—— .
2 T4 2 dg? T

In a general sense, quantization is the passage from functions to opcrators. Returning to
our particle, we come across the problem : what operator has to be assigned to a function
more complicated than p, ¢, H, for example, pq, p*q> etc.? The point is that the operators
p and § do not commute: [p, 4] = h/i, while the functions p and ¢ do 1t. This problem
can be solved in different ways. First let us consider gp-quantization. In any monomial
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we write ¢ from left of p and then we put the huts. We obtain the correspondence
A(g,p) — A for polynomials, and we can extend it on arbitrary functions. The function
A(p, q) is called gp-symbol of the operator A. There is a simple way to find A(p,q) for
given A. Denote

;
®,(q) = ®(q,p) = e:rp%
Then .
A®,(q)
Alg,p) = 220
(¢,p) 3.00)

Therefore the kernel K(q,v) of an operator A is expressed in term of its gp-symbol as

follows: . 8(q.)
_ q,
I{(qav) - 27rh/A<q,t)(I)(v,t)dt

(all integrals are taken over R etc.) The multiplication of operators gives rise to a multi-

plication of symbols:
(Ax B)(a,p) = /A(q,t)B(s,p)B(q,p;s,t)ds dt

where
_ L 2(q,)%(s,p)
2rh ®(q,p)®(s,t)

There is another expression for the multiplication of symbols:

B(q,p;s,t)

2

(A * B)(q,p) = exp(—th—=-)Alq,1)B(s,p)

8t(95 t:p,s:q

o that OAOB  (ih)20*A0°B
Vs 1
A+ B=AB—ihZ-2= gacT L
#B=AB=hg 5 T Tl G By

(1.1)

From (1.1) we have

}Zin%A*B:AB (1.2)
;in%%(A*B—B*A): (A, B} (1.3)

where {A, B} is the Poisson bracket. Equalities (1.2) and (1.3) mean that for gp-quantiza-
tion the correspondence principle holds.

Similarly we consider pg-quantization (in monomials p stands before q). The kernel
L(q,v) of an operator A is expressed in terms of its pg-symbol A(q,p) as follows:

-’ 1 ®(q,1)
L(q,v) = ——/A t dt
(q/v) 2 h (v’ )@(U’t)

The multiplication of pg-symbols is given by formulae:

(A* B)(q,p) = / A(s, p)B(q,1)B(s, p; ¢,t)ds dt

2

= exp(ih——=)B(g,t)A(s,p)

atas t=p,s5=¢q
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In this case the correspondence principle (1.2), (1.3) holds too.
There is a connection between pg-symbol A and gp-symbol A of an operator A (given

by A — A — A):
Alg,p) = /B(S,p;q,t)B(q,i)ds dt

and also a connection between operators A and A, for which A(q,p) is ¢p- and pg-symbol
respectively: L(q,v) = K(v, —¢ + 2v), i.e. variables ¢, v are transformed by the matrix

(52)

There are also other quantizations: Wick, anti-Wick, Weyl etc., see, for example [5].
§2. Berezin quantization

Recall the concept of quantization proposed by Berezin, see [1-5]. We shall not give
it in its full generality, but restrict ourselves to a rather simplified version.

Let M be a symplectic manifold. Then C*°(M) is a Lie algebra with respect to the
Poisson bracket {A, B}, A, B € C®(M).

Quantization in the sense of Berezin consists of the following two steps:

(I) To construct a family Ay of associative algebras contained in C*°(M ) and depend-
ing on a parameter h > 0 (called the Planck constant), with a multiplication denoted by
% (depending on h also). These algebras must satisfy the conditions (a) through (d):

(a )}lle A x Ay = A1 Ay

—~
Q]
—

S

(b) lim h(41 * 42 A2 * ‘41) = {Al,AQ}

h—0

(¢) the function Ag =1 is the unit element of each algebra Ay;

(d) the complex conjugation A — A is an anti-involution of any Ay;
where the multiplication on the right-hand side of (a) is the pointwise multiplication and
conditions (a) and (b) together are called the correspondence principle (CP).

(IT) To construct representations A — A of the algebras A by operators in a Hilbert
space.

Berezin mainly considered the case when M is Kéahlerian, hence has a complex struc-
ture. The functions in question are functions A(z, 2) analytic on z and Z separately. In
this case complex conjugation reduces to the permutation of z and z: f(z,2) = f(%,2).

For our theory we shall slightly change some of the conditions above: namely, the
factor 4 in (2.1) has to be omitted, the anti-involution is the permutation of arguments.
and, finally, we give up the Hilbert space structure of the representation space.
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§3. Para-Hermitian symmetric spaces of the first category

Let us recall some facts about semisimple symmetric spaces G/H. Here G is a con-
nected semisimple Lie group with an involutive automorphism o # 1. Denote by G the
subgroup of fixed points of o. Then H is an open subgroup of G”. There exists a Cartan
‘nvolution 7 of G commuting with o. Let K = G7. For Lie groups G, ... we denote
their Lie algebras by the corresponding small Gothic letters g, ... We assume that the
pair (g, ) is effective, i.e. § contains no non-trivial ideals of g. The automorphisms of g
induced by o, 7 are denoted by the same letters o, 7. There is a decomposition of g into
direct sums of +1, —1-eigenspaces of @ and : g=h+qgand g=t+p.

The subspace q can be identified with the tangent space of G/H at the point z° = He,
it is invariant with respect to the adjoint representations Adg of H and adg of b.

Now assume, in addition, that G/H is symplectic. Then 4 has a non-trivial centre
Z(b). For simplicity we assume that G/H is an orbit AdG - Zo of an element Z, € g. We
can assume that G is simple. Then the statement "G/ H is para-Hermitian of the first
category” means that the centre Z(1) of b is one-dimensional: Z(y) = RZy, and Zg can
be normalized so that the operator I = (adZg)q is an involution. Therefore, Zg € p N .
A symplectic structure on G/H is defined by the bilinear form w(X,Y) = B(X, IY) on
g, where B(X,Y) is the Killing form of g.

The +1-eigenspaces gt C qof I are Lagrangian, H-invariant, and irreducible. They
are Abelian subalgebras of g. So g becomes a graded Lie algebra:

g:q—+b+q+(= 81 +So+9+1)~

The pair (gt,¢~) is a Jordan pair [11] with multiplication (XYZ}=3i{X,Y],Z] Let
 and x be the rank and the genus of this Jordan pair. )

Set Q* = expq®. The subgroups P = HQ* = Q*H are maximal parabolic sub-
groups of G, with H as a Levi subgroup. One has the following decompositions:

G=Q"HQ™ (3.1)
=Q-HQT (3:2)
- QtHK (3.3)
— Q HEK, (3.4)

where bar means closure and the sets under the bar are open and dense in G. Let us
call (3.1) the Gauss decomposition and (3.3) the Twasawa-type decomposition. Allowing
some slang, let us call (3.2) the anti-Gauss decomposition and (3.4) the anti-lwasawa-type
decomposition. For an element in’G all three factors in (3.1), (3.2) and the first factors in
(3.3), (3.4) are defined uniquely, whereas the second and the third factors in (3.3), (3.4)
are defined up to an element of K'N H.

For g € G we define the transformations £ — £ of g~ and n— 7 of gt taking £ and 7
from the Gauss and the anti-Gauss decompositions:

expﬁ-g:epr-ipexp{N, (3.5)

~

expn-g =expX - h-exp7. (3.6)




Bectruk TIY, 1.2, Bbin.4, 1997

These ¢ and # are defined on open and dense sets in ¢~ and q* respectively, depending
on g. 3

Therefore, G acts on ¢~ x q* : (£,1) — (&,7). The stabilizer of (0,0) is P*NP~ = H,
so that we obtain the embedding (defined on an open dense set)

g x gt — G/H. (3.7)

We may regard (£,7) as coordinates in G/H.

The connection between the Gauss and the anti-Gauss decompositions gives us an
operator and a function, both very important (see (3.9}, (3.10) below). Let £ € q7,n € ¢
Decompose the anti-Gauss product exp £ -exp(—n) according to the Gauss decomposition:

expf -exp(—n) =expY - h-exp X. (3.8)
Denote this h by h(€,7). On q* define the operator

K(&,n) = Adh(€,n) g+ (3.9)

which is the analogue of the Bergman transform for Hermitian symmetric spaces. In terms
of Jordan pairs it becomes:

KT =T =2{néT} + {n{€T¢}n}.

Under the action of (7 the operator K (&,n) is transformed as follows:

K(E,7) = (Adh™) e K (€, 1) (AdR), e,

where k and h are taken from (3.5) and (3.6).

The function det K(€,n) is a polynomial in &,7. Moreover, det K(£,n) = N(&,n)",
where N(£,7) is an irreducible polynomial in ¢ and 7 of degree 7 in £ and 7 separately
[11]. In view of (3.7) the function

b(¢,n) = [det K(&,m)] ™ (3.10)

can be regarded as a function on G/H, becoming an analog of the Bergman kernel. It is
invariant with respect to H.
A point z in G/H C g with coordinates &,7 1s

t=Zo—-X+7Z+Y

where X € q7,Y € q* are given by (3.8), Z = [¢{,Y] = [, X] € 4, and for X, Y we have
equations X = ¢ + AX,Y = —n — AY, where A = (1/2)ad[{, n], which allow to find X, Y

by means of iterations:
X = (B A Y = —(E+A)

Let us write a G-invariant metric ds?, symplectic form w, measure dz on G/H. Take
a basis Eq,...,E, of ¢~ in such a way that B(E;,TE;) = é;;. Then F; = 7E; form a basis
of gt. Let & and 7; be the coordinates of ¢ € ¢~ and n € q* in these bases. Then the
desired metric, form and measure are:

ds® =2 kY(€,n)d:dn; ‘ (3.11)
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w =2 kY(E,n)dé: A dn; (3.12)
dz = [b(§,n)|dey ... demdny . .. dy,, (3.13)
where & are the entries of K(&,7)71. The function F(§,m) = Inb(¢,n) is the potential of
the metric:
i O*F
2k = ———
9¢:0n;

The likeness of (3.11) and (3.12) reflects the fact that G/H has the structure of a
manifold over the algebra D = {z+jy,z,yer, ;2= 1}.

The coset spaces S+ = G/P~, S~ =G/Pt S = K/K N H are compact manifolds,
diffeomorphic to each other by the following correspondence:

5%k —— s*k, k¢ K, (3.14)

where s* = P-e s~ = Pte,s°=(Kn H)e are the basic points. The natural action of G
on Sf yields two actions of G on S : 5 § and 5~ 8, where s = 5%, § = 5%, 8 = 5Ok,
and k, k are obtained from the Iwasawa and the anti-Iwasawa decompositions:

kg=expY;-hy -k, (3.15)
kg =exp X, - hy - k. (3.16)
Set
§=s-g; (3.17)
then
§=s-71(g). (3.18)

The group (7 acts on S~ x S* in a natural way. The stabilizer of the point (s7,s%) is
H again, so that we obtain the following equivariant embedding G/H < S~ x S*. The
identification (3.14) gives rise to the equivariant embedding

G/H < SxS§ (3.19)

where G' acts on S x S by (s,¢) = (5,f). The image of (3.19) is a single open dense orbit.
Denote it by 0. Thus, S x S is a compactification of G/H. For the G-orbit structure of
S x S, see [9]. Note that G/H can be represented as the tangent bundle of the manifold
S.

The spaces q~ and q* can be embedded in S:

{87 expl, s ¥ expr(y),

where £ € g7, n € qt, see (3.17), (3.18), with open dense images; thus either £ or 7 can be
considered as a coordinate system on S. In these coordinates let us write a K-invariant

measure ds on S:
ds = \/b(¢, T¢)dE (3.20)

=/b(rn,n)dn. (3.21)
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We now define an important function ||s,t|| on S x S. For s,t € S take ks, k; so that
s = s%;,,t = s%,, and apply to k,k; ' the Gauss decomposition:

kk'=expY -h-expX. (3.22)
It turns out that det(Adh)q+ depends only on s,t, but not on the choice of k;, k;. We set

s, t]| = | det(Adh)q+| ", (3.23)

where A is taken from (3.22). Formula (3.23) defines ||s,|| on an open dense subset of
S x S. This function is continuous, symmetric and invariant with respect to the diagonal
action of K. It can be expanded on the whole S X S, keeping all these properties.

In terms of this function, we can rewrite (3.17) as follows:

dz = dz(s,t) = ||s, ]| "ds dt,

where z — (s,t) by (3.19). The orbit (1 is characterized by the condition ||s, | # 0.

The following table contains the list of simple symmetric Lie algebras g/ that cor-
respond to para-Hermitian symmetric spaces G/H with G simple, see [10]. Here Gpe(F)
denotes the Grassmann manifold of p-planes in F*, where F = R or H; S™! is the sphere
in R™; P,(0) denotes the octonion projective plane; n = p + ¢. For aesthetic reasons we
denote Lie algebras by capital Latin letters instead of small Gothic ones.

g h S
SL(n,R) SL(p,R)+ SL(q,R) + R Gpe(R)
SU=(2n) SU~(2p) + SU*(2¢q)+ R G ()
SU(n,n) SL(n,C)+R U(n)
SO*(4n) SU*(2n)+ R U(2n)/Sp(n)
SO(n,n) SL(n,R)+R SO(n)
SO(p, q) S0(p—1,q—1)+R (SP=t x S1 /7,
Sp(n,R) SL(n,R)+R U(n)/O(n)
Sp(n,n) SU*(2n) + R Sp(n)

Es6) SO(5,5) + R Go2(H)/Z,
Eg(_26) SO(1,9) + R Py(0)

E7(7) Eg) + R SU(8)/Sp(4) - Zy
E7(_25) Eg(—26) + R St Eg/Fy

§4. Representations induced from p*

For u € C, let w, be the character of H:

wa(h) = | det(Adh)gs| /"

We restrict ourselves to such characters of H, for simplicity. Extend w, to the character
of P%, setting it equal to 1 on Q*. Consider the representations of G acting on C=(S):

TF = Indgsws,
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A}

In more detail,

(T (9)e)(s) = wulh)p(3), (TFH(g)2)(s) = wal(h")e(3)

we use (3.15), (3.16) and put s = s°%, § = s°k, 8 = s°k; note that w,(h;) and w, (hT') are
well defined because w, () =1 for I € KN H. For the same g, the representations T* are
connected by 7: T, = T} o7, so that if 7 is an inner automorphism, then T and T;

are equivalent.
Let (¢,%) be the inner product in L%(S):

(p) = [ ols)bT)ds,

for ds, see (3.20), (3.21). This Hermitian form is G-invariant for the pairs
(T, Tfu <) and (T, T2;_ ). Therefore, for Rep = —&/2, the representations TF a
unitarizable, and we obtain two continuous series of unitary representations.

In a generic case, Tu are irreducible: the reducibility is possible only for real y satis-
fying some integrality conditions. Therefore the representations of the continuous series
are irreducible for Imu # 0.

On C*(S) define the operator A,:

$)= [[lls, ™ (t)at

the integral converges absolutely for Rey < —xk + 1 and is extended on p-plane as a
meromorphic function. This operator intertwines Tf with TF,_

ATE=TF_ A,
Moreover,
Ay = () E (4.1)

where E is the identity operator and c¢(u) is a meromorphic function.
The representations Tf (degenerate series representations) were studied for separate
spaces and with different degree of completeness (for references, see, for example, [16]).

§5. Supercomplete systems and symbols

Let us construct a quantization on G/H (a symbol calculus). The main role belongs
to the kernel of the intertwining operator from §4, i.e., to the function

®.(s) = ®(s,t) = ||s, t]|";

this function is an analog of Berezin’s supercomplete system. The function ®, has the
reproducing property (which is formula (4.1) written in another form):

o(s) = i) [, oD FEPCs

l'l;l

t)

ﬂ-

Let A be an operator acting on functions on 5. Define the covariant symbol A(s,t) of
_ A as follows:
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(A®.)(s)
®(s,t) '

We can regard it as a function A(z) on G/H, using (3.19). The operator is recovered by

A(s,t) =

its covariant symbol:

(Ap)(s) = elw) [ Als, Dgye(Edali. D (51)

The identity operator has 1 as its symbol. The multiplication of operators gives rise to
the multiplication of the symbols: A1A2 (Aq * Az) where

(Ay % Ag)(s,t) = /st Av(s, B) Aa(3, 8)B(s, t; 5, T)dx(5, T), (5.2)
- ®(s,1)0(5,t
B(Svt7 7t) - C(/L)q) S,t)q) §,t~)

Let us call this kernel the Berezin kernel.
On the other hand, let A(s,t) be a function on S x S. It givs rise to an operator A

by the formula i
(o)) = cl) [ AG DG T o(3)ds(3, D
s)=c¢ 5, 1) —=p(8)dz(s
4 ) Jsxs 8(3,0)" !
(it differs from (5.1) in the first argument of A only). Let us call the function Als,t)
the contravariant symbol of the operator A. Thus, we have a chain of correspondences:
A — A — A. Their composition B, called the Berezin transform, links the contra- and

covariant symbols by means of the same Berezin kernel:

Als, 1) :,/st B(s, t;3, 1) A(5, T)dz (3, D).

Thus, we have a method for constructing a family of algebras A,: they consist of the
covariant symbols A(s,t) = A(z) of operators from some class, the multiplication * in
Ay, is given by (5.2), the representations are A — A. For the Planck constant we take
h = —d/u where d depends on normalizations of measures, metrics, etc.

Define the bilinear form F,(¢,¢) on C*(S) by setting

Fulord) = (Ao, B) = [ lls,tI (s} (t)dsds

Let A’ be the operator conjugated to an operator A with respect to this
form: (Agp ) = Fu(p, A’ ). Then their symbols are connected by the transposition
of the arguments: A’(s,t) = A(t,s). The map A — A’ changes the order of the factors in
the product (5.2): (A; * Ay) = Aj * A}, so it is an anti- involution of any Aj. In order
that CP be in agreement with this anti-involution, we must omit the factor i = /=1 in
formula (2.1).

By (3.19) the Berezin kernel can be regarded as a function B(z,z) on G/H x G/H.
In coordinates £, 7, it can be written in terms of the function (3.10):

W ‘-u/ﬂ
b(¢,m)b(¢,7)

380




Bectuuk TI'Y, 1.2, Bbin.4, 1997

where (£,7) — z,(£,7) — & accordingly to (3.7). In particular (recall that 2° = He is
the basic point of G/H):

B(z, :EO) = C(ﬂ)“’(ﬁﬁ ,7)|u/~_

The kernel of an intertwining operator depends on a realization of a representation.
If we use the coordinates ¢,7n, then we must take the function ®(£,7n) = |b(&,m)|7#/%, in
direct analogy with the Hermitian case.

i §6. Tensor products

For u € R the tensor product

R, =T, . ®T*

—u—K —L—K

acting on C%(S x S) has the following invariant Hermitian form:

EL(on02) = clp) [ er(s,00a(D) (s, ] 13,2])" ds dt ds di.

The representation R, together with E/, of G in C%°(S x 5) can be considered as an
analog of the canonical representation from [18].

Let us restrict this representation to the space D({) (the space of C*-functions on {}
with compact support). An operator ¢ — f on D(Q) defined by

fs,t) = (s, t) [ls, tlI**"

takes the representation T-,_, & Tt ,of Gin the representation U of G in D(f) by
translations (see (3.17), (3.18)): T

Ug)f(s,t)=[(s-g,t-7(9)),

and the Hermitian form E, in the Hermitian form £, with the Berezin kernel (let us call
E, the Berezin form):

Eu(fi, f2) = /fl(s,t)f2(§,f)3(s,t;”,f) de(s,t) dz(3, 1), (6.1)
or, in terms of G/H:

(Ug)f) (z) = f(zg),
Eulfi, ) = [ A R@B (e, 2) dw di. (6.2)

Thus, we obtain a densely defined G-invariant Hermitian form E, on L*(G/H) (with
D(G/H) as the domain). The integral (6.1), or (6.2), converges absolutely for Rep > —1
and is understood as the analytic continuation for other u’s .

We can regard B(z,2°) as a H-invariant distribution on G/H. Suppose that we
succeed expanding B(z,z°) in terms of spherical functions (distributions) on G/H. This
is equivalent to writing a Plancherel formula for E,. Then we can write expressions of F,
in terms of Laplace operators Ay, ..., A,. This gives us information about the behaviour
of E, as p — —o0, and we can say whether CP is true.
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The representation R, on C=(S x §) is equivalent to the representation U for p
sufficiently near to p = —#/2. For other u the decomposition of R, contains additional
terms so that the space C®(S x S) needs some ”completion” to contain an orthogonal
decomposition with respect to E.

§7. Examples

(a) The hyperboloid of one sheet (the imaginary Lobachevsky plane) G/H, where
G = SL(2,R), H = GL(1,R), see [13]. The Lie algebra g consists of real 2 X 2 matrices
with the zero trace. Let Zo = diag{1/2,—1/2}. Then H consists of diagonal matrices,

h = Z(h) = RZo,
ClEnhe-feny e

The space G/H consists of matrices

I = l T3 Ty — 9
T 9\~ — 22 —I3
satisfying the condition detz = —1/4. In R3, define a bilinear form [z,y] = —z1y1 +
22y2 + Tays. Then the condition detz = —1/4 is [z,z] = 1, i.e., exactly the equation of
the hyperboloid of one sheet.

The group G acts on G/H by z g 'zg and on g~ and g* by fractional linear
transformations:

£

af +7 bn + 5 (a 5)
y : y §= €q.
Be+5 " mta v 6

The embedding (3.7) is .

R S/ R E-n . 14&
L=¢&n’ L—¢n’ L=¢n
The manifold S is the unit circle Ju| = 1in C. For this example it is convenient to

take the embedding (3.19) as follows: z — (u,v), |u| = [v[ =1, where

o T3t 122 i T3t T
U = = - v=¢e" = ——
I + 1 T, — 1
(now a, 3 are not the entries of g). The action of an element of G on u,v is a fractional
linear function from SU(1,1), the same for both u,v.

Let us take the measure dz and the Laplace-Beltrami operator A on G/H as follows

I_dﬂfl({l’g_ 2dédy da dpf

T el (L—é9)? 1 —cos(a—f)

- , 92
A—(l—fn)@——Q(I—Cos(a—ﬂ))aaaﬁ.

Let U be the unitary representation of G on L*(G/H) by translations (the quasiregular
representation). It decomposes into irreducible unitary representations of three series: the
continuous series representations T,, o = —% + tu, u > 0, with multiplicity 2, and the
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discrete series representations T, n = 0,1,2,..., with multiplicity 1, see, for instance,
[12]. Correspondingly, L*(G/H) decomposes into the direct sum of four subspaces:

LHG/H)=LO + LM + L} + L.

Let us write out the expressions for the Berezin transform on these subspaces in terms

of A:
I(~p+o)l(~p—0—1) sinpur+(—1)sinor

— (e)
B L(=p)l(=p - 1) sin um on Lc*,
M(—p+o)(-p-—0c—1) +
B = L
I(—u)T(—p - 1) o

where the right-hand sides should be considered as functions of A = o(s + 1). For L]
and L; we obtain:

BNE—&A (g — —o0).
Thus, CP holds for the discrete spectrum and does not hold for the continuous spectrum.
As to algebras with the multiplication (5.2), we can take as such the subspaces of L} or
L7 consisting of K-finite vectors. They have no identity element.

(b) The space G/H, where G = SL(n,R),H = GL(n — 1,R),n > 3. Here it is more
convenient to consider G/H as the orbit of the matrix z° = diag{0,...,0,1} under the
action  — ¢~ 'zg of G. Then G/ H consists of matrices z of rank one and trace one. This
space has rank r = 1 and genus « = n. The spaces of examples (a) and (b) exhaust all
para-Hermitian symmetric spaces of rank one up to the covering.

The stabilizer H of z° consists of matrices diag{a,b} where a € GL(n — 1,R), b =
(deta)™".

The subalgebras q~ and q* consist of matrices of the form (7.1), where £ is the row
(&1,...,&,-1) and n is the column (n1,...,7,-1) from R"™'. The embedding (3.7) is

ot <—n€ —77>
1 —¢n £ 1 )

In these coordinates on G/H, the Laplace-Beltrami operator is:

5?
A=(1-¢&n bij — &) 377
( )Z( J J)a&anj
For z,y € R™ we write (z,y) = z1y1 + -+ + z.yn and |z| = y/(z,2). The manifold
S is the unit sphere S™7! : |s| = 1 in R™ with the identification of points s and —s, i.e.,
S is the (n — 1)-dimensional real projective space. We have ||s,t]| = |(s,?)|. Any matrix

r € G/H can be written as
t's
(t,s)’
where ¢,s € S™71 (t,s) # 0, the prime denotes matrix transposition. Let ds be the
Euclidean measure on S™7'. The following measure dz on G/H is G-invariant:

dr = |(t,s)| "dt ds.
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The supercomplete system is ®(s,¢) = [(s,¢t)|*. In terms of G/H the Berezin kernel is:
B(z,2) = c(p)ltr(22) ],

where
-1
c(p) = {2"+17r"—2f‘(—y —n+ 1)'(p 4 1)[cos(p + g)w — cos %]} .

The quasiregular representation U of G on G/H decomposes into irreducible unitary
representations of two series: the continuous series representations T, .,0 = (1/2)(1—n)+
| iu,u > 0,6 = 0,1, and the discrete series representations Ty(m),o(m) = (1/2)(2 — n) +

m,m = 0,1,2,...; all with multiplicity 1, see [14], [15], [8]. Let us write the expressions
of the Berezin form (¢ < (1 —n)/2) in terms of A:

B [(—p+0o)T(—p —U—n—{-l)‘COS}MT-f-(—l)ECOSO'ﬂ'( ad)

B D(—p)I'(—p—n+1) cosurw + 1 mecch
[(—p+o)(-p—0c—n+1) sinpr+(=1)*sinor

B= : (n even).

[(—p)(—p—n+1) sin pm
The right-hand sides should be regarded as functions of A = o(c + n — 1). In both
formulae the first fraction behaves as 1 — p7'A when p — —oo. It is just what we need
for CP. In the second fractions, the term with (—1)° disappears on the discrete spectrum
for n even. So we have CP on the discrete spectrum for n even.
We can unite both formulae above

[(estpte)p(amesptles) | p(et(esn)

— 2

=(-1) F(u—o;—l+6)r(y+o;rn+s) ‘F(_%)F(—u—nﬂ)

For the decomposition of tensor product R, acting on C*(S x S, see [6,7]. For
g > (—n + 1)/2 additional representations act on distributions on S x S concentrated
on the boundary I' of . This action is diagonalizable (the corresponding representation
decomposes into the direct sum of irreducible representations). In general, the appearance
of representations acting on distributions concentrated on manifolds of lower dimension
is one of the intriguing phenomena in harmonic analysis.
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